
54 The Delphi Magazine Issue 37

COM Corner:
ActiveX Data
Binding In Delphi
by Steve Teixeira

The idea of binding database
fields to control properties is

certainly not a new one for Delphi
developers. After all, data-aware
controls have been a basic part of
Delphi since version 1.0. However,
the ability to connect fields to
properties has traditionally been
limited to native VCL controls.
ActiveX data binding is a different
animal altogether, and the building
of Delphi’s ActiveX support has
progressed steadily since the early
days. Delphi 2 brought us an
ActiveX control container, but with
no data binding support. Delphi 3
provided the ability to easily
create ActiveX controls which sup-
port data binding, but still no con-
tainer data binding support.
Finally, Delphi 4 brings it all
together to provide control and
container support for ActiveX data
binding.

So What Is
ActiveX Data Binding?
Like people, ActiveX data binding
comes in two varieties: simple and
complex.

As the name implies, simple data
binding is a fairly straightforward
system for binding database field
values to ActiveX control proper-
ties: the control notifies the con-
tainer before and after a property
value changes and the container
automatically modifies the prop-
erty value whenever the value in
the associated database field
changes.

Complex data binding involves
the manipulation of interfaces,
ICursor and ICursorMove in particu-
lar, to negotiate cursor-level data
navigation and manipulation
between control and data. Com-
plex data binding isn’t directly sup-
ported by Delphi, so this article

will focus on the creation and use
of simple data bound controls.

There isn’t a lot of work to be
done in order to implement data
binding in an ActiveX control. Data
binding is supported on a per-
property level. To make a property
bindable requires only a few flags
to be set in the type library and a
couple of extra method calls in
your control’s implementation.
Speaking in purely ActiveX terms,
bindable properties will normally
have at least the VARFLAG_FBIND-
ABLE, VARFLAG_FREQUESTEDIT and
VARFLAG_FDISPLAYBIND flags set in
the IDL description of the control
interface. Additionally, the prop-
erty ‘setter’ function for the bind-
able property will normally call the
OnRequestEdit and OnChanged meth-
ods on the container’s IProperty-
NotifySinks. The container is
responsible for maintaining the
correlation between a bound prop-
erty and a data set field. If all that
flew over your head, stay tuned
and I promise that this will make
more sense when I discuss the
Delphi specifics in just a moment.

As an aside, allow me to mention
a bit of important terminology: a
bindable property is a control
property that follows the descrip-
tion outlined in the previous para-
graph. A bound property refers to a
bindable property that is currently
connected to a field in a data set.
One additional note is that some
containers don’t support data
binding, so your control should be
able to function (albeit in a more
limited fashion) when used in such
an environment.

Creating A Simple
Data Bound ActiveX Control
Being a Delphi programmer, the
first step in creating a data aware

ActiveX control is to create a suit-
able VCL control or choose an
existing VCL control from which to
create the ActiveX control wrap-
per. For the purposes of this illus-
tration, I’ve created a simple VCL
control called TColorPick that
simply paints a rectangle in a color
specified by the Color property.
The color can be set at design-time
via the Object Inspector or at run-
time using the control’s local menu
or application code. It is the Color
property that I will make data-
aware when this VCL control is
encapsulated as an ActiveX con-
trol. This VCL control also surfaces
two events associate with the
modification of the color property:
OnCanChange, which fires when the
color is about to be changed and
allows the programmer to veto the
change, and OnChanged, which is a
notification that fires after the
property has changed. The code
for this VCL component is shown in
Listing 1.

Now that we have a suitable VCL
control, the next step is to create
an ActiveX control based on this
VCL control using Delphi’s One-
Step ActiveX feature. This is done
by adding the TColorPick compo-
nent to the palette, selecting
ActiveX Control from the ActiveX
page of the New Itemsdialog, choos-
ing the TColorPick component and
filling in the file names appropri-
ately in the ActiveX Control
Wizard. The Wizard will then gen-
erate the source code and type
library for the new ActiveX control,
which I call DbXColorPick.

Now that the VCL and ActiveX
controls have been created, it’s
time to mark the Color property as
bindable and make the necessary
source code additions I described
generically earlier. To set the
appropriate type library flags,
open the Type Library Editor by
selecting View | Type Library from
the main menu. In the type library
editor, expand the control’s pri-
mary interface (IDbXColorPick, in
this case) node in the tree view in
the left pane, and select the Color
property. Select the Flags page in
the right pane, and you will see a
number of checkboxes that repre-
sent various IDL flags for the



September 1998 The Delphi Magazine 55

unit ColorPickers;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs;

type
TColorChangeEvent = procedure (Sender: TObject; NewColor:
Tcolor; var CanChange: Boolean) of object;

TColorPick = class(TCustomControl)
private
FColor: TColor;
FOnCanChange: TColorChangeEvent;
FOnChange: TNotifyEvent;
procedure PopupClick(Sender: TObject);

protected
function CanChange(NewColor: TColor): Boolean; virtual;
procedure Changed; virtual;
procedure Paint; override;
procedure SetColor(Value: TColor); virtual;

public
constructor Create(AOwner: TComponent); override;

published
property Align;
property Anchors;
property Color: TColor
read FColor write SetColor default clBlue;

property Constraints;
property DockSite;
property DragCursor;
property DragKind;
property DragMode;
property ParentShowHint;
property ShowHint;
property Visible;
property OnCanChange: TColorChangeEvent
read FOnCanChange write FOnCanChange;

property OnChange: TNotifyEvent
read FOnChange write FOnChange;

property OnClick;
property OnDblClick;
property OnDragDrop;
property OnDockDrop;
property OnDockOver;
property OnDragOver;
property OnEndDock;
property OnEndDrag;
property OnEnter;
property OnExit;
property OnGetSiteInfo;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;
property OnStartDock;
property OnStartDrag;

property OnUnDock;
end;

procedure Register;
implementation
uses Menus;
procedure Register;
begin
RegisterComponents('Samples', [TColorPick]);

end;
constructor TColorPick.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
Width := 100;
Height := 100;
FColor := clBlue;
PopupMenu := NewPopupMenu(Self, '', paLeft, True,
[NewItem('Change Color', 0, False, True, PopupClick, 0,
'')]);

end;
function TColorPick.CanChange(NewColor: TColor): Boolean;
begin
Result := True;
if Assigned(FOnCanChange) then
FOnCanChange(Self, NewColor, Result);

end;
procedure TColorPick.Changed;
begin
if Assigned(FOnChange) then FOnChange(Self);

end;
procedure TColorPick.Paint;
begin
Canvas.Brush.Color := FColor;
Canvas.Rectangle(0, 0, Width, Height);

end;
procedure TColorPick.SetColor(Value: TColor);
begin
if (FColor <> Value) and CanChange(Value) then begin
FColor := Value;
Invalidate;
Changed;

end;
end;
procedure TColorPick.PopupClick(Sender: TObject);
begin
with TColorDialog.Create(Self) do begin
if Execute then Self.Color := Color;
Free;

end;
end;
end.

➤ Listing 1

selected property. The flags per-
taining to simple data binding are
shown in table 1. In this case, I
enable each of these flags for the
Color property.

The final step in making the
Color property bindable is to
ensure that the OnRequestEdit and
OnChanged methods of IPropertyNo-
tifySink are called at the appropri-
ate time. For this, I take advantage
of the OnCanChange and OnChanged
events that I created for the VCL
control. The ActiveX Control
Wizard already generated meth-
ods to handle these events, the
implementation of which effec-
tively translate calls to the VCL
events into calls to the appropriate
methods on the ActiveX control’s
events interface.

The code generated by the
ActiveX Control Wizard for these
two event handlers is shown in
Listing 2.

Flag Meaning

Bindable The property supports data binding

Request Edit The property will call the container’s
IPropertyNotifySink.OnRequestEdit method prior to
modifying a property value.

Display Bindable The property should be displayed to the user as
bindable.

Default Bindable The property best represents the control, and is
therefore considered the default bindable property.
This flag can only be used on one property on the
object.

➤ Table 1

A bindable property must call
OnRequestEdit prior to changing
the property value so that the con-
tainer has an opportunity to disal-
low modification of a property
value when it sees fit (when a data
set is read-only, for example).
Rather than directly obtaining the
container’s IPropertyNotifySink
interface and attempting to call it’s
methods, the TActiveXControl base

class provides two overloaded
methods which do the dirty work
for you. These methods are
declared as shown in Listing 3.

As you’ve probably deduced,
the different versions of this
method are provided as a
convenience to the developer,
allowing the developer to refer to
the property either by name or by
dispid. You should use the dispid



56 The Delphi Magazine Issue 37

procedure TDbXColorPick.CanChangeEvent(Sender: TObject;
NewColor: TColor; var CanChange: Boolean);

var
TempCanChange: WordBool;

begin
TempCanChange := WordBool(CanChange);
if FEvents <> nil then
FEvents.OnCanChange(OLE_COLOR(NewColor), TempCanChange);

CanChange := Boolean(TempCanChange);
end;
procedure TDbXColorPick.ChangeEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnChange;

end;

➤ Listing 2

function PropRequestEdit(DispID: TDispID): Boolean; overload;
function PropRequestEdit(const PropertyName: WideString): Boolean; overload;

➤ Listing 3

procedure TDbXColorPick.CanChangeEvent(Sender: TObject;
NewColor: TColor; var CanChange: Boolean);

var
TempCanChange: WordBool;

begin
TempCanChange := WordBool(CanChange);
if PropRequestEdit(-501) and (FEvents <> nil) then
FEvents.OnCanChange(OLE_COLOR(NewColor), TempCanChange);

CanChange := Boolean(TempCanChange);
end;

➤ Listing 4

version of PropRequestEdit when-
ever possible because it is more
efficient than the property name
version because the implementa-
tion of the property name version
obtains the dispid for the property
using IDispatch.GetIDsOfNames and
then calls the dispid version (use
the type library editor to find the
dispid for a particular property).

The implementation of the
dispid version of PropRequestEdit
does the work of iterating over all
of the IPropertyNotifySinks sinked
to the control and called their
OnRequestEdit function. If any of
these return an error value,
PropRequestEdit returns False.
Listing 4 shows the new implemen-
tation of the TDbXColorPick.Can-
ChangeEvent that includes the call
the PropRequestEdit.

As you might expect, TActiveX-
Control also contains a wrapper
that handles the housekeeping
involved in calling the IPropertyNo-
tifySink.OnChanged method. This
method, called PropChanged, is also
overloaded for either a property
name or dispid (Listing 5).

Once again, the dispid version of
this method is more efficient. The
new implemenation of the TDbXCol-
orPick.ChangeEvent, which calls
PropChanged, is shown in Listing 6.

By the way, notice that I did not
insert my calls to PropRequestEdit
and PropChanged in the Set_Color
property setter that was generated
for the ActiveX control by the
ActiveX Control Wizard. It would
have been incorrect to call PropRe-
questEdit and PropChanged in
Set_Color because Set_Color is
only called when the Color prop-
erty is set via COM. If the Color
property is set via the control’s
local menu, for example, the
Set_Color method would not get
called. You have to make sure that
the locations in code you choose to
insert your calls to PropRequestEdit
and PropChanged are reside in code
paths that will be executed any
time the property value changes.

Just as I mentioned earlier, you
set a few type library flags, and you
call a couple of methods. That’s all
there is to creating a data bound
ActiveX control! Your control is
now ready for use in Delphi, VB, or

function PropRequestEdit(DispID: TDispID): Boolean; overload;
function PropRequestEdit(const PropertyName: WideString): Boolean; overload;

➤ Listing 5

procedure TDbXColorPick.ChangeEvent(Sender: TObject);
begin
PropChanged(-501);
if FEvents <> nil then FEvents.OnChange;

end;

➤ Listing 6

another ActiveX control container.
Check the notes at the end for com-
pilation and installation details.

Using Simple Data
Bound Controls In Delphi
If you inspect the Pascal file gener-
ated from the type library for this
control, you will see that a VCL
wrapper is created for the control
like any other ActiveX control, but
the wrapper descends from TDbO-
leControl rather than TOleControl
as you might have been used to
seeing. TDbOleControl is found in
the DbOleCtl unit, and it represents
a data-aware TOleControl. The
most notable property of TDbOle-
Control is called DataBindings,
which is a collection of TDataBin-
dItem, where each collection item

represents an association between
one ActiveX control property and
one field in a data set. When you
import this control into Delphi and
attempt to manipulate the Data-
Bindings property, you will be pre-
sented with a property editor
called the Data Bindings Editor,
which enables you to establish
links between the various bindable
properties and field in a data set.
The Data Bindings Editor is shown
in Figure 1.

Once a link is established
between the bindable property
and a field, you can use the ActiveX
control in a manner similar to
Delphi’s native ActiveX control. To
ddemonstrate, I’ve created a
database table with two fields: a
string and an integer. The string



September 1998 The Delphi Magazine 57

represents the name of a color and
the integer represents the RGB
value for the color. To browse this
data, I have also created an appli-
cation that allows you see the
DbXColorPick ActiveX control in
living, breathing action. The app is
shown running in Figure 2.

The disk with this issue contains
the source code for the TColorPick
VCL control, the associated
DbXColorPick ActiveX control, and
the sample application and data.
To go ahead and compile and use
the ActiveX, follow a few simple
steps. First, open the ActiveX proj-
ect in Delphi 4 (sorry, not Delphi
3). Then compile it using Pro-
ject|Compile. Then you need to
register the OCX with Windows,
either from Delphi (Run|Register
ActiveX server) or from the com-
mand line (from Start|Run type
regsvr32 filename.ocx after copy-
ing the OCX file into the Win-
dows\System folder). Finally,
import the ActiveX into Delphi
(Components|Import ActiveX). You
are then ready to try the sample
project.

➤ Figure 2

Summary
I hope I’ve given you some insights
on what ActiveX data binding is
and how you can create and use
ActiveX controls with bindable
properties in Delphi 4. As a control
writer, Data binding support will
make your ActiveX controls even
more useful to those using tools
like Visual Basic or Visual C++. As
an application developer, the abil-
ity to use data-aware ActiveX con-
trols in Delphi opens up even more
possibilities in terms of third party
controls available for your use. All
that and the technology is a lot of
fun to boot!

Steve Teixeira is an R&D Engineer
at Inprise Corporation where he
works on the Borland Delphi and
Borland C++Builder products. He
is also the co-author of Delphi 4
Developer’s Guide from SAMS
publishing. Steve thinks it’s cool
when you send him Delphi COM
questions that make good articles.
Got one? Why not email Steve at
steixeira@inprise.com

➤ Figure 1

For Delphi News

Check the
Developers Review

website at

www.itecuk.com


	So What Is ActiveX Data Binding?
	Creating A Simple Data Bound ActiveX Control
	Using Simple Data Bound Controls In Delphi
	Summary

